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It is shown that if A is a unital C*-algebra then Z(A), the centre of A, is a
proximinal subspace. In other words, for each a # A there exists z # Z(A) such that
&a&z& is equal to the distance from a to Z(A). � 1997 Academic Press

INTRODUCTION

A subspace X of a Banach space Y is said to be proximinal if for each
y # Y there exists x # X such that &y&x& is equal to the distance from y to
X; see [5] for background information. There is no reason, in general, to
expect subspaces to be proximinal, so it is always interesting to discover
conditions which force proximinality. For example, a simple compactness
argument shows that each finite-dimensional subspace is proximinal. For
C*-algebras, it is known that every closed, two-sided ideal is proximinal
[1, Theorem 4.3], and Victor Shulman has pointed out that [3, 3.9]
implies that every closed one-sided ideal is also proximinal.

If A is an abelian C*-algebra with an identity and B is a C*-subalgebra
of A containing the identity then B is proximinal [7, Theorem 2]. Mazur
had shown earlier, see [8, 7.5.6], that Bsa , the self-adjoint part of B, is
proximinal in Asa . Now suppose that A is a noncommutative C*-algebra
and a is a self-adjoint element of A. Let B be the C*-subalgebra of A
generated by a and Z(A), the centre of A. The distance from a to Z(A)sa

is the same whether computed in A or B, and Mazur's result says that
Z(A)sa is a proximinal subspace of Bsa . It follows that Z(A)sa is a
proximinal subspace of Asa . This result was obtained, by essentially the
same method, in [9]. It raises the question of whether Z(A) itself is
proximinal in A. In this paper we show that it is.

We now introduce some of the definitions that we need. Let A be a
C*-algebra with an identity. Recall from [2, p. 351] that the Glimm ideals
of A are the ideals of A generated by the maximal ideals of Z(A) (Glimm
ideals are automatically closed by the Cohen Factorization Theorem). The
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sum of two maximal ideals of Z(A) contains the identity, from which it
is clear that the Glimm ideals of A are in one-to-one correspondence
with the maximal ideals of Z(A). The set of Glimm ideals of A is denoted
Glimm(A), and equipped with the topology from the maximal ideal space
of Z(A), so that Glimm(A) is a compact Hausdorff space, homeomorphic
to the maximal ideal space of Z(A). Thus we can identify Z(A) with the
algebra of continuous complex-valued functions on Glimm(A). Further-
more, for each a # A the map G � &aG& (G # Glimm(A)) is upper semi-
continuous on Glimm(A); see [2, p. 351; 4, Lemma 9]. (Here aG denotes
the canonical image of a in the quotient C*-algebra A�G). Each primitive
ideal of A intersects Z(A) in a maximal ideal, and therefore contains a
(unique) Glimm ideal of A. This implies that the Glimm ideals of A have
zero intersection.

We use the following two theorems. The first is a very useful result from
[11]. If A is a unital C*-algebra and a # A, let *(a) be the nearest scalar
to a.

Theorem 1. Let A be a C*-algebra with an identity and let a # A. Then
for any * # C

&a&*(a)&2+|*&*(a)| 2�&a&*&2.

The next theorem was proved in [10, 2.3].

Theorem 2. Let A be a C*-algebra with an identity and let a # A. Then
the distance from a to the centre of A is equal to

sup[&aG&*(aG)& : G # Glimm(A)].

Recall that a set-valued function F from a topological space X into the
set of subsets of a topological space Y is said to be lower semicontinuous if
for each open subset U of Y the set [x # X : F(x) & U{<] is open in X.

Theorem 3. Let A be a C*-algebra with an identity. Then the centre of
A is a proximinal subspace.

Proof. Let a # A. We may assume that the distance from a to Z(A) is
strictly positive, :, say. We shall assume, for convenience, that :=1,
although we will continue to call it : to show where it comes from. For
each G # Glimm(A) define XG by XG=[* # C : &aG&*&�:]. It is easy to
see that XG is a closed convex set, nonempty by Theorem 2. We prove that
the function G � XG is a lower semicontinuous set-valued map from
Glimm(A) into the set of subsets of C.

Let U be any open subset of C, and suppose that G # Glimm(A) with
XG & U nonempty, that is, there exists * # U such that &aG&*&�:. Let

115PROXIMINALITY OF A C*-ALGEBRA CENTRE



File: 640J 303203 . By:DS . Date:20:03:97 . Time:13:03 LOP8M. V8.0. Page 01:01
Codes: 2511 Signs: 1303 . Length: 45 pic 0 pts, 190 mm

= # R, with 0<=<1, such that the ball of radius =, centred on *, is con-
tained in U. Let N=[H # Glimm(A) : &aH&*&<:+=3�8]. Then N is an
open neighbourhood of G, by the upper semicontinuity mentioned above.
Let H # N and set ;=:&&aH&*(aH)&. Then 1�;�0, by Theorem 2.
Theorem 1 implies that

&aH&*(aH)&2+|*&*(aH)| 2�&aH&*&2<(:+=3�8)2,

so

|*&*(aH)| 2<(:+=3�8)2&(:&;)2==3�4+=6�64+2;&;2 (V)

(since :=1). We consider two cases:

(i) ;<=2�4. It follows from (V) above that |*&*(aH)| 2<=3�4+
=6�64+=2�2<(49�64)=2. Hence |*&*(aH)|<(7�8) =, so *(aH) # XH & U.

(ii) ;�=2�4. Set +=(1&=�2)*+(=�2) *(aH). Then

&aH&+&=&(1&=�2)(aH&*)+(=�2)(aH&*(aH)&

�(1&=�2) &aH&*&+(=�2) &aH&*(aH)&

<(1&=�2)(:+=3�8)+(=�2)(:&;)

�(1&=�2)(:+=3�8)+(=�2)(:&=2�4)

=:&=4�16<:,

so + # XH . Furthermore, |*&+|=(=�2) |*&*(aH)| , and 2;&;2�1 for all
;, so it follows from (V) above that

|*&*(aH)| 2<=3�4+=6�64+2;&;2

<1�4+1�64+1=81�64.

Hence |*&+|<(=�2)(9�8)<=. Thus + # XH & U.
This shows that the map G � XG is lower semicontinuous. Thus

Michael's Selection Theorem [6] implies that there is a continuous func-
tion f on Glimm(A) such that f (G) # XG for each G # Glimm(A). Let
z # Z(A) such that zG= f (G) for each G. Since the Glimm ideals of A have
zero intersection,

&a&z&=sup[&aG&zG& : G # Glimm(A)]

=sup[&aG& f (G)& : G # Glimm(A)]

�:.

Hence &a&z& is equal to the distance from a to Z(A). Q.E.D.
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Remarks. (i) The distance from a to Z(A) is of interest because it is
related to the norm of the inner derivation induced by a; see [9, 10]. Since
a and b induce the same inner derivations if and only if a&b # Z(A),
Theorem 3 implies that for each inner derivation on a unital C*-algebra
there exists an element of minimal norm implementing the derivation.

(ii) The method of proof also shows that each C*-subalgebra B of
Z(A) which contains the identity is proximinal. One simply replaces the
Glimm ideals by the family of ideals of A generated by the maximal ideals
of B. The proofs of Theorem 2 and Theorem 3 go through unchanged.

(iii) Reference [3, 3.12] gives an example of a unital C*-algebra A
with a nonproximinal abelian C*-subalgebra B. In fact, Bsa is not
proximinal in Asa .
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